PythonParts for Developers

Created 11/2015
Bert Van Overmeir — SCIA Herk-de-Stad

Contents
To 13 11 - 14 To] o D O PPV U PP TOPOROPRTOP 2
Allplan with Python INtEgrationoccuiiiiiiiiie e s ree e e 2
Installing the development Kit for PYLNON.........coooiiiiiee e e e 2
ViSUAL STUAIO 2013 ...ttt sttt sttt et esbe e sae e et e et e e bt e sbeesmeesatesaneenbeennes 2
PythonTools fOr VisUal STUTIOeiiieiiiiiiiieee ettt e e s e e e s v 4
INstalling the PYthon INterpreter. ... e ree e e 5
Basic editing of PythonParts in AlIPIan ... s s srre e e e reaeeeeas 6
OpeNing your firSt PYENONPAITcoociiiieiciee ettt e e e e e rtre e e e ata e e e eennaeeeeennaeeaean 6
Editing PYLNONPArt ParameEtersueeecciiieecciiee ettt et e e tte e e e tee e e e eate e e e e bae e e eeabeeeeeenbeeeeennbaeeeennsenas 7
OPENING A . PYP Fil e e e e e ee e e e st e e e s s abe e e s esabeeeessabeeeeenreeas 7
e T o= 2 T o1V o I PSP SPR 8
Externally editing parameters for APIaNcooi i 10
Advanced Editing of PythonParts in Visual StUIOcoeiiiiiiiiiiiee e 11
SEtING UP the WOIKSPACE . .uiii ittt e et e e e et e e e e e abae e e eabeeeeenbeeaeenrenas 11
FAN (1o T oI 1 o o= T 1= PRSP 11
Python Project in Visual STUIOc.eieiiiiiii ettt e e e s ebee e e 11
ANAlyzZiNg @an @XaMPIE SCIIPT...cii ittt eeee e e et e e e bee e e e abe e e e esabaeeeeeabaeeserabeeeeennsenas 13
GENEratiNg PYTNONDOCviiiiiiieee ettt ettt e e et e e et e e e e ebt e e e e ebtaeeeebtaeeessteeeesastaeaeeanes 13
BEfOIE WE STAIT..eueeetietieitte ettt sttt et e e b e bt e sae e sttt b e b e be e s aeeeaeeearean 14
BasiC PYthONPart STrUCLUIE ...cceeieee et e e e etee e e e sabae e e s sabae e e eareeas 14
Defining inherited MEthOAScoi i e sbae e e e aaeeas 15
Referring to parameters from the python scripl.......cccocciieieiiii e 16
Import statements and python PhiloSOPNY........coooiiiii i 16

Simple column SCriPt @XAMPIEvviiiicieie e e e e e e e raba e e e s sabaeeesaaaeeeeas 17

Installation

Allplan with Python Integration

Install Allplan with Python support through the installer package provided. After a normal installation
has been executed, a few extra additions in relation to PythonParts have been added to Allplan. The
respective paths can be found below. We will discuss each one of them more in detail later on the
tutorial series.

Firstly, examples of PythonParts can be found under:

X:\ProgramData\Nemetschek\(...)\ETC\Examples\PythonParts

Please refer to “testing” for more information about the examples.
The Allplan Python libraries that we will be using are located under:

X:\Program Files\Allplan\(...)\Prg

It is important that you remember this pat as we are going to need it further on installation.
Thirdly, scripts written in Python can be found under:

X:\ProgramData\Nemetschek\(...)\2016\ETC\PythonPartsScripts

It is important that you do not mover any of the files, nor rename the scripts. In the example files,
Allplan refers to certain scripts. Execution will fail upon changing names.

Installing the development kit for Python

To use any of the scripts within Allplan, we do not need to install development kit. If your aim is to
use existing PythonParts, you can skip this part and move to “use of PythonParts”.

Visual Studio 2013

PythonParts are best developed in Visual Studio. Although development is, of course, not limited to
this tool, we strongly recommend to use visual studio as this tutorial series and the plugins provided
will use Visual Studio too.

To install Visual Studio 2013, visit the link below.

https://www.visualstudio.com/downloads/download — visual — studio — vs

Make sure you pick Visual Studio 2013 Community Edition with Update 5 as so:

Visual Studio 2013 Nete: If you already have Visual Studio Community 2013 (original release versian) and run this download, only

Update 5 is installed. If you don't have Visual Studio Community 2013 and run this download, both Visual Studio

= Community 2013 Communi and Update 5 are installed. In either case, Visual Studio 2013 Language Packs (original release

Ultimate 2013 versians) also be installed
Premium 2013
Professional 2013
Test Professional 2013 Choose format: ® Web installer © IS0
Express 2013 for Desktop

Brpress 2073 foren

Express 2013 for Windows
Visual Studic Community 2013 with Update 5 - English
Visual Studio 2013 Update 5

Figure 1: downloading visual studio

Picking another edition of Visual Studio is not wrong, but it is however problematic for installing the
Python Tools later on. Download the web installer as we are only going to need a small portion of the
full capabilities of Visual Studio. Upon installation at the Optional Features dialogue, it is safe to
untick all the optional features except for the web developer tools, as they might come in handy for
report development in Allplan.

Community 2013

Optional features to install:

Figure 2: selecting the right installation options in Visual Studio

Now click install. Be aware that installation can take up to two hours. So be prepared to do some
other work in the meantime. After the installation of Visual Studio has completed, verify if the
program starts. You should get the following screen.

B Start Page - Microscft Visusl Studic. Qo v P - B x
FIE EOT VEW DEBUG TEAM TOOLS TEST ANAUZE WNDOW HELP Sgnin 2
BroWaP < b dmach. -

Community 2013 Discov

/isual Studio Community 2013
Get the most from Visual Studio with these resources: What's new on Microsoft Platforms
Stant =

[

Recent

Announcements

Output

Show autput fram, - fa

Code Anatyss [N RRl Team Explorer Class View

Figure 3: Visual Studio Interface

PythonTools for Visual Studio

The Required Python tools for Visual Studio should have been provided by your local Allplan dealer. If
not, please contact them for more information. Alternatively you can search for the python tools via
the link below, and search for version PTVS 2013 BETA (.30811.01).

https://www. visualstudio.com/en — us/features/python — vs. aspx

It is of key importance that you download the correct version of the Python Tools. The wrong version
will not work with your Visual Studio installation.

Before installing, you should disable the verification of files, this can be done by editing the registry.
The file should also be provided within the installation package you got from the Allplan dealer. If this
is not the case, do not continue installation before acquiring them.

T
Registry Editor
I Adding infermation can unintentionally change or delete values and cause components to
. stop working correctly, If you do not trust the source of this information in
CihUsersi\bertvot Documents pythen\ PTVS,30811.014,30811.01\EnableSkipVerification.reg, do
not add it to the registry.
Size
Are you sure you want to continue?
Yes Mo 14K
TKB
@ EnableSkipVerification 18/07/201517:36 Registration Entries 14 KB

Figure 4: skipping the verification process of the installation, click yes to continue
After adding the entries to the registry, you are free to install the Python Tools for Visual Studio.

ﬁ‘ﬁ Python Tools Beta for Visual Studio 2013 Setup - X

Welcome to the Python Tools Beta for
Visual Studio 2013 Setup Wizard
Python Tools for
i . The Setup Wizard allows you to change the way Pyth
Vlsua| Stl,ld 10 TDEIS Eetz folrz?.fgsugl?sﬁd}irggﬂ 13 F:gg.leres?arﬁﬁstgllesnun

your computer or to remave it from your computer. Click

[Julhun Mext to continue or Cancel to exit the Setup Wizard.

@ g &

powered

Figure 5: installing AFTER the skip verification has been executed

Installing the Python Interpreter
Upon starting Visual Studio, the Python Tools will be recognized, but you find yourself unable to
successfully executing a program as no interpreter has been installed.

To install an interpreter visit:
https://www.python.org/
Go to downloads, click on windows, scroll down and look for the python-3.4.3. X64 setup.

After installation, when you start Visual Studio, go to Tools, Options and check if the Python
environment is installed.

Options ? >

Search Options (Ctrl+E) P Default Environment: | Python 64-bit 3.4 ~

Performance Tools ~) : :

Database Tools Show settings for: Python 64-bit 3.4 ~ Add Envirenment

F# Tools

Graphics Diagnostics

HTML Designer

MNuGet Package Manager

Pythen Tools CA\Python3d\pythonw.exe
General

C\Python34\python.exe

kv T T T T T

Debug Interactive Window C:\Python3d\lib

Deb.uggmg . 64
Environment Options
Interactive Windows 2.4

S0L Server Tools

Text Templating

Web Performance Test Tools

Windows Forms Designer

Workflow Designer

PYTHOMNPATH

A A A v A

Figure 6: checking if the python environment is installed.

If this is not the case, click on add environment and add it manually providing the paths to the
python.exe, python.exe and library (view screenshot). If you did a default install, the paths should
resemble the paths in the screenshot.

That’s it! You are all set up to start working with Python for Allplan!

Basic editing of PythonParts in Allplan

Opening your first PythonPart

Every PythonPart in Allplan consists of a few files, but in order to open an existing file, only one file is
needed. You might have noticed that Allplan Python examples contain the following files in different
folders:

.py files: the python script,we will get into this later
.png files: placeholder images, obsolete
.pyp files:the most important files that can be used within Allplan

PythonParts can be dragged straight into Allplan. By dragging the .pyp file in Allplan, a similar
interface to SmartParts is shown.

[[= | pythonparts 3 allplan 2016_Python 2016 - New project - <No fileset>DF1 - = %
“ Home share View @] File Edit View Insett Format Tools Create Change Repeat Window 2
= ; -
1 || « 2016 Python > 2016 > ETC > Examples > PythonParts v © | search pythonarts o |EERSBE — mEsXEEED G| @ Lexs 1
N ~ PythonPart s Central perspective:1 22X 5
Name Date modified Type size E

Quick access
B Desktop Geometrybramples 06/11
3 Downloads ReinfercementExamples
[Folder PythonParts.deu

Tools_|[PythonPart | Wizards | Library | [Objects | [Connect| [Layers

File folder
File folder Linge | 100000

[Documents DEU File 1KE Langelinks | 6.0000

[FolderContent_PythonParts.deu DEU File K8 Mohelinks 10000
= Pictures 8 Beamt PNG File 7Kg vonemite [0
@ OneDrive (& Columnt PNG File K8
& ExampleControls PNG File 7KE Hahe rechts | 1.0000
L IIEC3 5] EempleControlsExpander PNG File KB Vollquerschnitt finks | 1.5000
& Network & param01 PNG File ke Vollquerschnitt rechts | 1.5000
5 C0-FIERY & paramoz PG file e Ubergang I-Profilinks 03000
(8] param0 PNG File K8
g Eizz:; & SteeveFoundation_geom1 PNG File 9Ke Ubergang I-Profil rechts | 0.3000
|| SteeveFoundation! PNG File TKB Flanschbreite unten | 04000
‘58 DESKTOP-GHDO] Stairs1 PNG File K8 Flanschhohe unten | 0.3000
W E7as0-CHRS & stairsTa PGl e Flanschschrage unten | 0.2000
O EmsOKATHLEEl & stairs2 PNG File 7x8
= Eras0-TECLA 8] stairsa PNG File K8 Stegbreite | 02000
[FLEBOXV2 (8] stairsso PNG File 7ke Flanschschrige oben | 0.1000
= Hosaccaon (8] stairsBuilder PNG File K8 Flanschbreite oben | 06000
= ospoe 8] StartPythonDebug PNG File i Flanschhohe oben 02000
8] Tablet PNG File KB
5 HDSCITRIXT B Tobiez e e . Flanschversatz links [0.5000
3 HDSICTADCT 8 WalComert PNG File 768 Flanschversatzrechts | 0.5000
[HDSICTEST! PNG File 7KE <
[HDSICTFILT PYP File 4KB ()
[PP Fie 2xe & 2
3 HosRS PYP File KB

) ExampleControlsExpander
3 HpssToPCI3 J parmp ®

7 SteeveFoundation?
[HDS-VCENTERT =)

) stais1
[|T-ASSISTANT-B &

PYP File KB
[kM82D935 PYPFile 1ske
0 M3300-PATRIZIA PYP File 17KE
5 MMG00-JEF 7 stairsta PYP File 16KE

o s] StsBuider

S| i o :

8 MGG00- GEERT) Table2 PYP File KB

53 MB500-GINO 7 WallComert PVP File Ke

[MG500-PETERVT) WallComer2 PYP File KB

30 M6800-BERT (2] BxampleControls_deu ML D ent Ke

L1 MBPRASCAL 2] ExampleControls_eng ML Document KB

0 PASCALDS

[0 SEPSERVERBE

0 SIXHEADS

[5UPPORT2 & & & | Close

M suproRT Set the to point Ax 0.000 Ay [0000 Az | 0000 & & A P22 oo [-] = |-
A2items 1 item selected 3.83 KB [E=] & | PressFit Drawing type: Scale definition Scale: 1:100 | Length: Angle: 0.000 % 1

Figure 7: dragging the PythonPart "Beam" into Allplan which shows a few extra options, just like SmartParts.

In current versions (Allplan 2016.1.0) it is only possible to drag the PythonPart in Allplan and edit it
once, after you close the tab in Allplan, the elements do get generated and become genuine Allplan
objects. This way, a fully functional 3D model of reinforcement can be easily made, but it is not
possible to easily change special options like in SmartParts, you would just have to use the standard
editing tools like “stretch”.

The .pyp files do not need to be in the ETC folder in order to be able to work properly. They can be
placed anywhere on the computer. It is however important that the .py files reside in the correct
folder (X:\ProgramData\Nemetschek\\(...)\2016\ETC\PythonPartsScripts) as the .pyp files
reference to them. This should already be the case if you are using the examples provided.

Editing PythonPart parameters

Opening a .pyp file
Every PythonPart consists of at least two files (more is possible as you write more advanced scripts).

< name of PythonPart > .pyp located wherever you want
< name of Script > .py located in PythonPartsScripts

When we open a .pyp file in a text editor, we see something that resembles the following:

<?XML VERSION="1.0" ENCODING="UTF-8"?>
<ELEMENT>
<SCRIPT>
<NAME>COLUMN1.PY</NAME>
<GEOMETRYEXPAND>0</GEOMETRYEXPAND>
</SCRIPT>
<PAGE>
<NAME>GEOMETRIE</NAME>
<PARAMETER>
<NAME>COLUMNWIDTH</NAME>
<TEXT>BREITE</TEXT>
<VALUE>600.</VALUE>
<VALUETYPE>LENGTH</VALUETYPE>
</PARAMETER>

Every .pyp file consists of a fairly straightforward structure written in XML and can be easily edited.
The .pyp file contains all the parameters that will be later on used to generate the menu within
Allplan whilst opening a new PythonPart.

23 aplan 2016.Python 2016 - New projedt - <No filesets:DF1 - = x
Fle _Ed_formal_Vew e Bl G0 Yew pued Fomat Jeok Crste Change fepes indew 1
<pand version-"1.07 encoding-"utf-872 FEOBEE @ mBEAaXBEEe G|dw Fos—I/1
<Element> —

<Script>

Bythentan Central perspective 1 5%
<Hame>Coluand. py</Name> Toais | PythanPast |wizares | Library | Objects | |Camneat] | Layers
<GeometryExpand>Be /GeometryExpand>
<fSeripts> Breite | 0.6000
<Page>
<Name >Geometrie</Name>
<Parameter>
<Hane>Colunnidthe MNane>
<TextsBreitec/Texts
Valuex600. </Value>
<ValueTyperLengthe/ValueTypex
</Paraneter>
<Parameter>
<Hane>ColunnThickness</Hane>
<Text>Dicke</Text>
<Value>dd. </Value>
ValveType>Lengthe/ValueType>

AFZRANS

XObebBhEase

<Hame>ColumnHelghts< /Hame>
<TextsHohes Text>
<Values5088. </Value>
<ValueType»Lengths ValueType>

</Parameter>

<Parameters
<HamesCorbelWidthe Nane>
<TextsKonsoloredtes Texts

¥

«Value>208.</Values
<ValueType>Lengthe/ValueTypes

</Parametery

<Parameter>
<Hane>CorbelHeight</Nane>
<Text>Konsolhohe</Texts
<Valuerddd. < /Value>
<ValueTypesLengthe/ValusTypes

</Paraneter>

<Parametar>
<Hane>CorbelTope /Name>
<Text>Oberkante Konsolac/Text> b
<Value>4000. < /Value>
WValueTypesLengthe /ValueType>

</Parametersy

</Pages
</Element>

1M &

I=1=4 ® Close
Sut the to point Ax 0000 Ay [oo Az 0000 B A Pl oo &= =
Press F1 1 Drawing type: Scale definition Scale: 1:100 Langth: Angle: 0,000 1

Figure 8: comparison between menu in Allplan and XML structure in notepad of the .pyp file

Editing a .pyp file

Files in .pyp format make use of the XML standard. This means that they can be easily edited. In XML
we can make multiple objects and assign values to them. We can also put multiple objects within
another object. This is called nesting. Every object (or section) is declared between <object_name>
and always ends with </object_name> (notice the forward slash). Every PythonPart in Allplan has the
following structure:

Descriptive line
The descriptive line contains the version of XML used and the font format (standard is UTF-8)

Element statement
Every PythonPart in Allplan will (besides the descriptive line) be edited within an <Element>
</Element> statement.

Script statement

Within the Element statement, the most important to declare is the adjacent script that is connected
to the .pyp file currently in. Allplan will, upon execution of the script, look for this file in the
“PythonpartsScripts” folder. It is important that the syntax of the name is correct. Nothing will
happen once you declare a wrong filename.

<SCRIPT>
<NAME>COLUMN1.PY</NAME>
<GEOMETRYEXPAND>0</GEOMETRYEXPAND>
</SCRIPT>

The script section contains of two parameters. The first parameter, name, refers the the location
where the .py file is saved as stated above. Absolute paths, nor relative paths are possible. The
location should always be in the destined folder within in Allplan. The second parameter,
GeometryExpand, is very important. GeometryExpand defines if Allplan should let the Pythonpart
react on other objects within its interface. A fine example of this is reinforcement that needs to be
placed in a wall around a window. You want the reinforcement to react to the surrounding hole in
the wall. Then you will have to set parameter GeometryExpand to 1.

Later on we will see that only setting this value to 1 does not suffice. An extra definition in the
script’s body needs to be defined.

As a general recommendation: we do recommend that you first develop your .pip files and define all
the parameters. Your code in Python has to reference to these parameters. Things go a lot easier
when parameters are created before starting on the code. It keeps things structured.

Page statement

Page is a placeholder for the different tabs within an Allplan menu (cfr. to SmartParts). It works the
same way as an Element statement. Whenever you want to close the page and start a new one, start
a new page and close the previous one with </page>. Every page has two types of fields. A page has a
name and a parameter section.

Parameter statement of a page
One parameter section within a page might look like this:

<PARAMETER>
<NAME>COLUMNWIDTH</NAME>
<TEXT>BREITE</TEXT>
<VALUE>600.</VALUE>

<VALUETYPE>LENGTH</VALUETYPE>
</PARAMETER>

In this example, the width of a column is defined. The name, text and value is not of utter importance
and can be defined by the developer. The valuetype on the other hand is very important. The
following types are recognized:

VALUETYPE GENERATED INPUT FIELD IN ALLPLAN

LENGTH ENTER A DISTANCE FIELD

LAYER SELECT A SUBLAYER FROM DROP DOWN MENU

PEN SELECT A PEN THICKNESS FROM DROP DOWN MENU
CHECKBOX DISPLAYS A CHECKBOX (VALUE O OR 1)

COLOR SELECT A COLOR (ONLY ALLPLAN COLORS)
REINFBARDIAMETER SELECT A DIAMETER FROM DROP DOWN MENU

INT ENTER AN INTEGER (ONLY WHOLE NUMBERS)
DOUBLE ENTER A DOUBLE (COMMA ALLOWED)
EXPANDERSTART / EXPANDEREND ADD EXPANDERS TO CERTAIN PARAMETERS

Using the expander
The expander allows for showing certain parameters or omitting them in a drop down fashion. The
expander code works as follows:

<PARAMETER>
<NAME>EXPANDER1</NAME>
<TEXT>EXPANDER1</TEXT>
<VALUE>TRUE</VALUE>
<VALUETYPE>EXPANDERSTART</VALUETYPE>
</PARAMETER>
... (PARAMETERS)
<PARAMETER>
<VALUETYPE>EXPANDEREND</VALUETYPE>
</PARAMETER>

The expander is firstly defined as a parameter. The value of the expander defines if it should be open
upon start or closed. Ending a certain section of the expander works by defining a new parameter
with valuetype “ExpanderEnd”.

Adding an image
Adding an image is as of today not yet implemented (Allplan 2016.1.0)

Working with reinforcement

After closing the final page on your .pip file with a </page> statement, you can add reinforcement
when needed. Reinforcement sections let you define placements for bars with certain parameters.
Be warned that declaring a reinforcement shape does not automatically create an entry in a menu of
the PythonPart to enable and disabling it. A parameter type checkbox should be created and should
enable and disable the reinforcement shape in the script. Remember that the .pyp script absolutely
has no intelligence. Any connection between scripts MUST be defined in the python script. One
exception to this rule is the use of referencing to already existing parameters. One example is shown
below where, in the menu, a “ConcreteCover_reference” parameter is shown. In the reinforcement
object it is possible to refer to this parameter through the .pyp file alone.

<REINFORCEMENT>
<SHAPENAME>USER SELECTABLE PART OF REINFORCEMENT</SHAPENAME>
<ID>0</ID>
<DIAMETER>8</DIAMETER>
<DISTANCE>100</DISTANCE>
<CONCRETECOVERSHAPE>CONCRETECOVER_REFERENCE</CONCRETECOVERSHAPE>
<PLACEMENTCOVERLEFT>CONCRETECOVER _REFERENCE </PLACEMENTCOVERLEFT>
<PLACEMENTCOVERRIGHT>CONCRETECOVER_REFERENCE </PLACEMENTCOVERRIGHT>
<CONDITION>SHAPE1</CONDITION>

</REINFORCEMENT>

VALUETYPE DESCRIPTION

SHAPENAME NAME OF THE PLACEMENT

ID ID NUMBER

DIAMETER DIAMETER OF THE BARS

DISTANCE DISTANCE BETWEEN THE BARS IN THE PLACEMENT
CONCRETECOVERSHAPE COVER OF THE BARS IN RELATION TO THE SHAPE IN P
CONCRETECOVERLEFT END COVER LEFT OF BARS

CONCRETECOVERRIGHT END COVER RIGHT OF BARS

CONDITION UNKNOWN PARAMETER (CONDITION=SHAPENAME)

Externally editing parameters for Allplan

Although it is possible to change the parameters inside Allplan through the menu that shows when
dragging them inside the program, a much more interesting approach would be to externally access
and edit the files.

An example could be a website where users could define their own preferences for a beam. On the
website, a plain XML file is generated with PYP code. This file can now easily be dragged in Allplan
(providing the script is functional) without the user having anything more to do than extracting the
file from the website and opening the finished beam in Allplan.

input on automated automated
customised XML PYP generation of
webpage generation Allplan model

input on MELDENLY manual
customised processing data generation of
webpage from website Allplan model

Figure 9: comparing the old and new workflow of Allplan with PythonParts

Currently, a test version of this XML PYP editor/generator is under development @SCIA Herk-De-
Stad.

Advanced Editing of PythonParts in Visual Studio

Setting up the workspace

In order to use Python in Visual Studio (which we already covered in chapter one) and more precise,
use the libraries provided by Nemetschek for development, we need to set up the Visual studio
environment.

Allplan libraries
The Allplan libraries which we need for development can be found in the PRG folder in the Program
Files. Libraries for Python always have .pyd file extension. Remember the path to the files.

'™ < | Prg
“ Home Share View
™ » ThisPC » Local Disk (C:) # Program Files » Allplan » 2016 _Verification 2016 » Prg » L\\) v O

G Mame Date medified Type Size

Quick access

I Desktop | | EcZn_n32.deu DEU File TKB
L) Setup lcon 2TKB
‘. Downloads R
| | NemAll_Python_Elements.pyd PYD File

|| Documents

| | NemAll_Python_Geometry.pyd PYD File
=| Pictures || NemaAll_Python_IFW_Input.pyd PYD File 271 KB
& OneDrive | | NemAll_Python_Palette.pyd PYD File 109 KB
| | NemAll_Python_Reinforcement.pyd PYD File 606 KB
3 This PC |] MemAll_Python_Utility.pyd PYD File 307 KB
= Network =] Tz-license Text Document 2KB
1 avny evt tlh TI R Fil= SR KR
Figure 10: locating the Allplan PYD libraries
LIBRARIES DESCRIPTION
ELEMENTS ?
GEOMETRY CONTAINS ALL GEOMETRY FUNCTIONS AND OBJECTS
IFW_INPUT ?
PALETTE ?
REINFORCEMENT CONTAINS ALL REINFORCEMENT FUNCTIONS AND OBJ
UTILITY GENERAL UTILITIES

Python Project in Visual Studio
You can either create a new Python project manually in Visual Studio, or use the template provided
by your Allplan reseller.

When using the template, open the .pyproj file in a text editor and change the paths of the
<reference include="...”> and all other paths to the appropriate path in the library. Open the
template afterwards, Visual Studio will start with the necessary libraries already included.

When starting from scratch, create a new Visual Studio project and select Python Application from
the list. Afterwards you need to add the libraries yourself. Therefore click right on the references in
the right pane and select “add reference”. Now you can also browse for the libraries. With shift-click
you can select multiple libraries at the same time.

Solution Explorer
@ e-e

Add Reference...

B Manage NuGet Packages...
Scopeto This

Mew Sclution Explorer View

Search Solution Explorer (Ctrl+5)

Pl PythonApplication1
b [Pythen Environments

Figure 11: adding a new library to the project

@@ &=

Ta] Solution 'PythonApplication1' (1 project)

New Project 7 X
P Recent |.NET Framework4.5 | Sort by: [Default Search Installed Templates (Ctrl+E) -
4 Installed Py - .
R From Existing Python code Python Type: Pythen
-
4 Templates — A project for creating a command-line
4 Visual Basic Python Application Python application
b Store Apps
Windows Desktop b Aeure Cloud Service Python
b Web
PY
Cloud @ Web Project Python
Reparting
PY
Silverlight @ Bottle Web Project Python
Test
PY
WCF @ Django Web Project Python
Workflow [
i PY
b Visual C= @ Flask Web Praject Python
b Visual C++
& PY
b Visual F @ Flask/Jade Web Project Python
SQL Server
PowerShell -r -
 Invasernt [IronPython Applicetion Python
4 hon PY
meb «'-»J IronPython WPF Application Python
-PY
b Online X1 IrenPython Silverliaht Web Pace Python =
Click here to go online and find templates.
Name: PythenApplication
Location: [ciusers\bertve\documentsivisual studio 2013\Projects <] [Browse.. |
Solution name: PythenApplication Create directary for solution
[] Add to source control

Figure 12: selecting Python application from the Python tab

When going to project > properties, you can select the interpreter to be used. When no interpreter is
available, please refer to the installation chapter. An interpreter is the vital component that will
execute and compile your code and check for errors. You can also define a startup application. In
most cases you are only going to have one script in a project. So the name of that script should

already be in the list.
Liebug
Publish Application
Startup File |PythonAppIication‘|.py

‘Working Directory |

[windows Application

Interpreter:

[Use global default)

Use global default]
Python 64-bit 3.4
Figure 13: selecting an interpreter in the properties pane

Double clicking on the script in the right pane should open the script and show an absolutely empty
screen with a cursor

liit
L]
i

- B2 W - & <| p Start ~ (' - |Debug ~||AnycCPU - H_inl n _

¥ =

nonppicsion _ [NNERSIORTRY |

w
m
2
fil
o

o=
=
£
o
o
g
a
T
a
=

Figure 14: the empty script

In order to test if everything is working, type <print (“hello”)> (without <>). You should get an output
window showing you hello after clicking on the green little arrow in the top screen.

= | P Start|~

Figure 15: run application

i FTOCESE | |[410U] pyInon.exe = LITECYCIE EVENTS ~ | Nread:

PythonApplicationd PythonApplicationl.py & >

| print("hello")

B CWPython3d\python.exe
hello

Press any key to continue

Figure 16: application running and well - Visual Studio has been set up correctly

Analyzing an example script

Generating PythonDoc
To help you get going, it might be useful to generate documentation of all the definitions in the
Allplan libraries. This can be done through the test projects included in your installation.

When using the project template, these will already be in the list with python scripts. When you
created a project from scratch, you will have to drag the file from the Examples/PythonParts folder
into your project’s solution explorer. It will be added to the project and automatically use your
imported libraries.

Import the “createHTMLDocumentation.py” file in your project.
A little bit down in the script you will see the following:

DRIVE_LETTR = 'X:\\/

Change X to the drive on which you installed Allplan and run the script. Documentation is now
written to ETC/PythonPartsScripts/Docu. The documentation consists of html files that are easy to
read.

rocess: | [3| Wi Python34\python.exe

Figure 17: successfully generated pythonDoc

Before we start

In this tutorial series, we do expect some basic knowledge of programming. If you are unfamiliar with
how Python works or coding in general, we refer to the following tutorial on YouTube in English. In
order to fully understand the next paragraphs, you should be familiar with concepts like: definitions,
classes, inheritance, objects, instances and general python syntax.

https://www. youtube.com/watch? v = N4mEzFDjqtA

Basic PythonPart structure

Figure 18: the basic guideline scheme every PythonPart needs to follow

A PythonPart mainly consists of two files, the PYP and the PY file. As discussed above, the PYP file
contains parameters for menu creation and reference in XML format. The PYP file can also be used as
an indirect modifier of the PythonPart through a basic XML editor. More complex changes and
adaptations to Objects in Allplan (E.g. reacting to existing object in the Allplan object space) need to
be done with the use of real Python Scripting. This is where the PYP file comes in.

Within the PY script file, a connection is laid with the parameters defined in the PYP parameter file. If
this connection has not been executed properly, or some objects are not referenced to, nothing will
happen upon executing the script in Allplan.

Furthermore, the PY script file “inherits” a few definitions. Upon dragging the file into Allplan, the
program will start looking for these definitions and try to execute them. The output should ALWAYS
be the same. There are three types of main definitions in Allplan script language. They will be
discussed later on.

Defining inherited methods

Although, Python is unable to inherit certain properties from classes (in comparison to Java for
example), inheritance in Python can be seen as the knowledge that the following three Python
Definitions will always be accessed by the Allplan Interpreter. It is therefore important to define
them properly.

DEFINITION NAME USAGE ALLPLAN ASSOCIATED PARAMETER | OUTPUT
CREATE_ELEMENT(...): ELEMENT GEOMETRY NONE GEOMETRY
MOVE_HANDLE(...): ELEMENT HANDLES NONE GEOMETRY,
HANDLES
EXPAND_CREATE_ELEMENT(...): EXPANDED GEOMETRY | GEOMETRYEXPAND (0/1) | BOOLEAN CHECK,
REACTS TO OBJECTS POINT, GEOMETRY

Figure 19: different definitions that should be used in Python for Allplan

“Expand Create Element” makes use of the GeometryExpand parameter. If this parameter is set to
zero, the definition does not need to be executed and defined.
A basic Python script structure for a beam would be like below.

(IMPORT STATEMENTS OMITTED)
DEF CREATE_ELEMENT(BUILD_ELE, DOC):

ELEMENT = BEAM(DOC) //REFERENCE TO THE BEAM CLASS

(..)

RETURN ELEMENT.CREATE(BUILD_ELE) //RETURNS GEOMETRY

DEF MOVE_HANDLE(BUILD_ELE, HANDLE, HANDLE_PROP, INPUT_PNT, DOC):

(..)

RETURN ELEMENT.CREATE(BUILD_ELE) //RETURNS GEOMETRY
DEF EXPAND_CREATE_ELEMENT(BUILD_ELE, EXPAND_UTIL, REF_PNT, VIEW_PROJ, DOC):

ELEMENT = BEAM(DOC) //REFERENCE TO THE BEAM CLASS

(...)

RETURN (TRUE, MODEL_PNT, ELEMENT.CREATE(BUILD_ELE, BEAM_LENGTH, BEAM_HEIGHT))

CLASS BEAM() :
DEF__INIT__(SELF, DOC): //INITIALIZE THE BEAM > THE REFERENCED DOC IS ALWAYS PASSED THROUGH!

()

We can see that the following structure is maintained: Object data gets created in in the Object class
(below), this data gets handled to Allplan through the basic definitions. If only defining a simple
beam, create_element and move_handle are enough. When creating reinforcements that react to

the environment, expand_create element is necessary. (create_element is obsolete as one of the two
gets selected because of the expandGeometry parameter)

When handling reinforcement, this should also be passed through the create_element method
together with the other geometry. Allplan will handle the recognition of different elements.

Referring to parameters from the python script

Assigning parameters from within the Python script is fairly easy once you have created the correct
parameters in the PYP file. An example will clarify this.

When | define a parameter with <name>Beam_Width</name> and <value>200</value> | can refer to
this parameter in the Python script as follows:

CLASS BEAM() :

(...)

DEF CREATE_GEOMETRY(SELF, BUILD_ELE): //CREATED A DEFINITION FOR SIMPLIFICATION, NOT NECESSARY
BEAM_WIDTH = BUILD_ELE.BEAMWIDTH.VALUE

()

COLUMN = ALLPLANGEO.POLYHEDRON3D.CREATECUBOID(BEAM_WIDTH, {(...))

()

As you can see, the assignment is fairly easy. In this case, Beam_width in the Python script will be
200, and this value can, afterwards, be used to create the column with another function (in this case
createCuboid).

All parameters, in order to use them properly, need to be referred to. The only parameters that are
handled by Allplan are ExpanderStart, ExpanderEnd and GeometryExpand.

Import statements and python philosophy

Every script, as described above, should start with the import statements and the definitions that
Allplan will use. In these import statements, it is of course possible to import your own scripts. In
case you want to use an external interface to change some object properties, or you want to write an
import application for Allplan, Python can be easily used to create a few python scripts that handle
these. A major advantage of using Python is data conversion. It is now possible to create your own
data converters. You handle the conversion, you control the data loss and conservation, and you are
in charge. This is contrasting to how import was handled before in Allplan.

convert to import in

recognized Allplan with
Allplan format almost no data
through Python loss

non-recognised
Allplan import
format

convert to
non-recognised recognized Allplan
Allplan import format format (e.g. IFC) with
third party software

import in Allplan
with substantial
amount of data loss

Figure 20: advantages of Python in the Allplan import Workflow

Simple column script example

We will discuss the creation of a simple column in Allplan. The column has a little reinforcement as
an example and is adjustable.

In the Allplan PythonPart example scripts, a columnl.py script can be found. This will be used as a
first basic example. Besides the basic imports from the Allpan NemAll libraries, this simple class also
uses predefined scripts for easier object handling. We will keep the description and explanation
limited to the functions used in the column script.

TODO

