
PythonParts for Developers
Created 11/2015

Bert Van Overmeir – SCIA Herk-de-Stad

Contents
Installation ... 2

Allplan with Python Integration .. 2

Installing the development kit for Python... 2

Visual Studio 2013 ... 2

PythonTools for Visual Studio ... 4

Installing the Python Interpreter ... 5

Basic editing of PythonParts in Allplan .. 6

Opening your first PythonPart .. 6

Editing PythonPart parameters ... 7

Opening a .pyp file ... 7

Editing a .pyp file ... 8

Externally editing parameters for Allplan ... 10

Advanced Editing of PythonParts in Visual Studio .. 11

Setting up the workspace .. 11

Allplan libraries .. 11

Python Project in Visual Studio ... 11

Analyzing an example script .. 13

Generating PythonDoc .. 13

Before we start .. 14

Basic PythonPart structure .. 14

Defining inherited methods .. 15

Referring to parameters from the python script... 16

Import statements and python philosophy... 16

Simple column script example .. 17

Installation

Allplan with Python Integration

Install Allplan with Python support through the installer package provided. After a normal installation

has been executed, a few extra additions in relation to PythonParts have been added to Allplan. The

respective paths can be found below. We will discuss each one of them more in detail later on the

tutorial series.

Firstly, examples of PythonParts can be found under:

𝑋:\𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝐷𝑎𝑡𝑎\𝑁𝑒𝑚𝑒𝑡𝑠𝑐ℎ𝑒𝑘\(…)\𝐸𝑇𝐶\𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠\𝑃𝑦𝑡ℎ𝑜𝑛𝑃𝑎𝑟𝑡𝑠

Please refer to “testing” for more information about the examples.

The Allplan Python libraries that we will be using are located under:

𝑋:\𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐹𝑖𝑙𝑒𝑠\𝐴𝑙𝑙𝑝𝑙𝑎𝑛\(…)\𝑃𝑟𝑔

It is important that you remember this pat as we are going to need it further on installation.

Thirdly, scripts written in Python can be found under:

𝑋:\𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝐷𝑎𝑡𝑎\𝑁𝑒𝑚𝑒𝑡𝑠𝑐ℎ𝑒𝑘\(…)\2016\𝐸𝑇𝐶\𝑃𝑦𝑡ℎ𝑜𝑛𝑃𝑎𝑟𝑡𝑠𝑆𝑐𝑟𝑖𝑝𝑡𝑠

It is important that you do not mover any of the files, nor rename the scripts. In the example files,

Allplan refers to certain scripts. Execution will fail upon changing names.

Installing the development kit for Python

To use any of the scripts within Allplan, we do not need to install development kit. If your aim is to

use existing PythonParts, you can skip this part and move to “use of PythonParts”.

Visual Studio 2013
PythonParts are best developed in Visual Studio. Although development is, of course, not limited to

this tool, we strongly recommend to use visual studio as this tutorial series and the plugins provided

will use Visual Studio too.

To install Visual Studio 2013, visit the link below.

ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑣𝑖𝑠𝑢𝑎𝑙𝑠𝑡𝑢𝑑𝑖𝑜. 𝑐𝑜𝑚/𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠/𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 − 𝑣𝑖𝑠𝑢𝑎𝑙 − 𝑠𝑡𝑢𝑑𝑖𝑜 − 𝑣𝑠

Make sure you pick Visual Studio 2013 Community Edition with Update 5 as so:

Figure 1: downloading visual studio

Picking another edition of Visual Studio is not wrong, but it is however problematic for installing the

Python Tools later on. Download the web installer as we are only going to need a small portion of the

full capabilities of Visual Studio. Upon installation at the Optional Features dialogue, it is safe to

untick all the optional features except for the web developer tools, as they might come in handy for

report development in Allplan.

Figure 2: selecting the right installation options in Visual Studio

Now click install. Be aware that installation can take up to two hours. So be prepared to do some

other work in the meantime. After the installation of Visual Studio has completed, verify if the

program starts. You should get the following screen.

Figure 3: Visual Studio Interface

PythonTools for Visual Studio
The Required Python tools for Visual Studio should have been provided by your local Allplan dealer. If

not, please contact them for more information. Alternatively you can search for the python tools via

the link below, and search for version PTVS 2013 BETA (.30811.01).

ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑣𝑖𝑠𝑢𝑎𝑙𝑠𝑡𝑢𝑑𝑖𝑜. 𝑐𝑜𝑚/𝑒𝑛 − 𝑢𝑠/𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠/𝑝𝑦𝑡ℎ𝑜𝑛 − 𝑣𝑠. 𝑎𝑠𝑝𝑥

It is of key importance that you download the correct version of the Python Tools. The wrong version

will not work with your Visual Studio installation.

Before installing, you should disable the verification of files, this can be done by editing the registry.

The file should also be provided within the installation package you got from the Allplan dealer. If this

is not the case, do not continue installation before acquiring them.

Figure 4: skipping the verification process of the installation, click yes to continue

After adding the entries to the registry, you are free to install the Python Tools for Visual Studio.

Figure 5: installing AFTER the skip verification has been executed

Installing the Python Interpreter
Upon starting Visual Studio, the Python Tools will be recognized, but you find yourself unable to

successfully executing a program as no interpreter has been installed.

To install an interpreter visit:

ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑝𝑦𝑡ℎ𝑜𝑛. 𝑜𝑟𝑔/

Go to downloads, click on windows, scroll down and look for the python-3.4.3. X64 setup.

After installation, when you start Visual Studio, go to Tools, Options and check if the Python

environment is installed.

Figure 6: checking if the python environment is installed.

If this is not the case, click on add environment and add it manually providing the paths to the

python.exe, python.exe and library (view screenshot). If you did a default install, the paths should

resemble the paths in the screenshot.

That’s it! You are all set up to start working with Python for Allplan!

Basic editing of PythonParts in Allplan

Opening your first PythonPart

Every PythonPart in Allplan consists of a few files, but in order to open an existing file, only one file is

needed. You might have noticed that Allplan Python examples contain the following files in different

folders:

. 𝑝𝑦 𝑓𝑖𝑙𝑒𝑠: 𝑡ℎ𝑒 𝑝𝑦𝑡ℎ𝑜𝑛 𝑠𝑐𝑟𝑖𝑝𝑡, 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑔𝑒𝑡 𝑖𝑛𝑡𝑜 𝑡ℎ𝑖𝑠 𝑙𝑎𝑡𝑒𝑟

. 𝑝𝑛𝑔 𝑓𝑖𝑙𝑒𝑠: 𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟 𝑖𝑚𝑎𝑔𝑒𝑠, 𝑜𝑏𝑠𝑜𝑙𝑒𝑡𝑒

. 𝑝𝑦𝑝 𝑓𝑖𝑙𝑒𝑠: 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑓𝑖𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝐴𝑙𝑙𝑝𝑙𝑎𝑛

PythonParts can be dragged straight into Allplan. By dragging the .pyp file in Allplan, a similar

interface to SmartParts is shown.

Figure 7: dragging the PythonPart "Beam" into Allplan which shows a few extra options, just like SmartParts.

In current versions (Allplan 2016.1.0) it is only possible to drag the PythonPart in Allplan and edit it

once, after you close the tab in Allplan, the elements do get generated and become genuine Allplan

objects. This way, a fully functional 3D model of reinforcement can be easily made, but it is not

possible to easily change special options like in SmartParts, you would just have to use the standard

editing tools like “stretch”.

The .pyp files do not need to be in the ETC folder in order to be able to work properly. They can be

placed anywhere on the computer. It is however important that the .py files reside in the correct

folder (X:\ProgramData\Nemetschek\\(…)\2016\ETC\PythonPartsScripts) as the .pyp files

reference to them. This should already be the case if you are using the examples provided.

Editing PythonPart parameters

Opening a .pyp file
Every PythonPart consists of at least two files (more is possible as you write more advanced scripts).

< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑃𝑦𝑡ℎ𝑜𝑛𝑃𝑎𝑟𝑡 > . 𝑝𝑦𝑝 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑤ℎ𝑒𝑟𝑒𝑣𝑒𝑟 𝑦𝑜𝑢 𝑤𝑎𝑛𝑡

< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑆𝑐𝑟𝑖𝑝𝑡 > . 𝑝𝑦 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑃𝑦𝑡ℎ𝑜𝑛𝑃𝑎𝑟𝑡𝑠𝑆𝑐𝑟𝑖𝑝𝑡𝑠

When we open a .pyp file in a text editor, we see something that resembles the following:

<?XML VERSION="1.0" ENCODING="UTF-8"?>

<ELEMENT>

 <SCRIPT>

 <NAME>COLUMN1.PY</NAME>

 <GEOMETRYEXPAND>0</GEOMETRYEXPAND>

 </SCRIPT>

 <PAGE>

 <NAME>GEOMETRIE</NAME>

 <PARAMETER>

 <NAME>COLUMNWIDTH</NAME>

 <TEXT>BREITE</TEXT>

 <VALUE>600.</VALUE>

 <VALUETYPE>LENGTH</VALUETYPE>

 </PARAMETER>

Every .pyp file consists of a fairly straightforward structure written in XML and can be easily edited.

The .pyp file contains all the parameters that will be later on used to generate the menu within

Allplan whilst opening a new PythonPart.

Figure 8: comparison between menu in Allplan and XML structure in notepad of the .pyp file

Editing a .pyp file
Files in .pyp format make use of the XML standard. This means that they can be easily edited. In XML

we can make multiple objects and assign values to them. We can also put multiple objects within

another object. This is called nesting. Every object (or section) is declared between <object_name>

and always ends with </object_name> (notice the forward slash). Every PythonPart in Allplan has the

following structure:

Descriptive line

The descriptive line contains the version of XML used and the font format (standard is UTF-8)

Element statement

Every PythonPart in Allplan will (besides the descriptive line) be edited within an <Element>

</Element> statement.

Script statement

Within the Element statement, the most important to declare is the adjacent script that is connected

to the .pyp file currently in. Allplan will, upon execution of the script, look for this file in the

“PythonpartsScripts” folder. It is important that the syntax of the name is correct. Nothing will

happen once you declare a wrong filename.

<SCRIPT>

 <NAME>COLUMN1.PY</NAME>

 <GEOMETRYEXPAND>0</GEOMETRYEXPAND>

 </SCRIPT>

The script section contains of two parameters. The first parameter, name, refers the the location

where the .py file is saved as stated above. Absolute paths, nor relative paths are possible. The

location should always be in the destined folder within in Allplan. The second parameter,

GeometryExpand, is very important. GeometryExpand defines if Allplan should let the Pythonpart

react on other objects within its interface. A fine example of this is reinforcement that needs to be

placed in a wall around a window. You want the reinforcement to react to the surrounding hole in

the wall. Then you will have to set parameter GeometryExpand to 1.

Later on we will see that only setting this value to 1 does not suffice. An extra definition in the

script’s body needs to be defined.

As a general recommendation: we do recommend that you first develop your .pip files and define all

the parameters. Your code in Python has to reference to these parameters. Things go a lot easier

when parameters are created before starting on the code. It keeps things structured.

Page statement

Page is a placeholder for the different tabs within an Allplan menu (cfr. to SmartParts). It works the

same way as an Element statement. Whenever you want to close the page and start a new one, start

a new page and close the previous one with </page>. Every page has two types of fields. A page has a

name and a parameter section.

Parameter statement of a page

One parameter section within a page might look like this:

 <PARAMETER>

 <NAME>COLUMNWIDTH</NAME>

 <TEXT>BREITE</TEXT>

 <VALUE>600.</VALUE>

 <VALUETYPE>LENGTH</VALUETYPE>

 </PARAMETER>

In this example, the width of a column is defined. The name, text and value is not of utter importance

and can be defined by the developer. The valuetype on the other hand is very important. The

following types are recognized:

VALUETYPE GENERATED INPUT FIELD IN ALLPLAN

LENGTH ENTER A DISTANCE FIELD

LAYER SELECT A SUBLAYER FROM DROP DOWN MENU

PEN SELECT A PEN THICKNESS FROM DROP DOWN MENU

CHECKBOX DISPLAYS A CHECKBOX (VALUE 0 OR 1)

COLOR SELECT A COLOR (ONLY ALLPLAN COLORS)

REINFBARDIAMETER SELECT A DIAMETER FROM DROP DOWN MENU

INT ENTER AN INTEGER (ONLY WHOLE NUMBERS)

DOUBLE ENTER A DOUBLE (COMMA ALLOWED)

EXPANDERSTART / EXPANDEREND ADD EXPANDERS TO CERTAIN PARAMETERS

Using the expander

The expander allows for showing certain parameters or omitting them in a drop down fashion. The

expander code works as follows:

<PARAMETER>

 <NAME>EXPANDER1</NAME>

 <TEXT>EXPANDER1</TEXT>

 <VALUE>TRUE</VALUE>

 <VALUETYPE>EXPANDERSTART</VALUETYPE>

</PARAMETER>

… (PARAMETERS)

<PARAMETER>

 <VALUETYPE>EXPANDEREND</VALUETYPE>

</PARAMETER>

The expander is firstly defined as a parameter. The value of the expander defines if it should be open

upon start or closed. Ending a certain section of the expander works by defining a new parameter

with valuetype “ExpanderEnd”.

Adding an image

Adding an image is as of today not yet implemented (Allplan 2016.1.0)

Working with reinforcement

After closing the final page on your .pip file with a </page> statement, you can add reinforcement

when needed. Reinforcement sections let you define placements for bars with certain parameters.

Be warned that declaring a reinforcement shape does not automatically create an entry in a menu of

the PythonPart to enable and disabling it. A parameter type checkbox should be created and should

enable and disable the reinforcement shape in the script. Remember that the .pyp script absolutely

has no intelligence. Any connection between scripts MUST be defined in the python script. One

exception to this rule is the use of referencing to already existing parameters. One example is shown

below where, in the menu, a “ConcreteCover_reference” parameter is shown. In the reinforcement

object it is possible to refer to this parameter through the .pyp file alone.

<REINFORCEMENT>

 <SHAPENAME>USER SELECTABLE PART OF REINFORCEMENT</SHAPENAME>

 <ID>0</ID>

 <DIAMETER>8</DIAMETER>

 <DISTANCE>100</DISTANCE>

 <CONCRETECOVERSHAPE>CONCRETECOVER_REFERENCE</CONCRETECOVERSHAPE>

 <PLACEMENTCOVERLEFT>CONCRETECOVER_REFERENCE </PLACEMENTCOVERLEFT>

 <PLACEMENTCOVERRIGHT>CONCRETECOVER_REFERENCE </PLACEMENTCOVERRIGHT>

 <CONDITION>SHAPE1</CONDITION>

 </REINFORCEMENT>

VALUETYPE DESCRIPTION

SHAPENAME NAME OF THE PLACEMENT

ID ID NUMBER

DIAMETER DIAMETER OF THE BARS

DISTANCE DISTANCE BETWEEN THE BARS IN THE PLACEMENT

CONCRETECOVERSHAPE COVER OF THE BARS IN RELATION TO THE SHAPE IN PI

CONCRETECOVERLEFT END COVER LEFT OF BARS

CONCRETECOVERRIGHT END COVER RIGHT OF BARS

CONDITION UNKNOWN PARAMETER (CONDITION=SHAPENAME)

Externally editing parameters for Allplan
Although it is possible to change the parameters inside Allplan through the menu that shows when

dragging them inside the program, a much more interesting approach would be to externally access

and edit the files.

An example could be a website where users could define their own preferences for a beam. On the

website, a plain XML file is generated with PYP code. This file can now easily be dragged in Allplan

(providing the script is functional) without the user having anything more to do than extracting the

file from the website and opening the finished beam in Allplan.

Figure 9: comparing the old and new workflow of Allplan with PythonParts

Currently, a test version of this XML PYP editor/generator is under development @SCIA Herk-De-

Stad.

input on
customised

webpage

automated
XML PYP

generation

automated
generation of
Allplan model

input on
customised

webpage

manually
processing data

from website

manual
generation of
Allplan model

Advanced Editing of PythonParts in Visual Studio

Setting up the workspace

In order to use Python in Visual Studio (which we already covered in chapter one) and more precise,

use the libraries provided by Nemetschek for development, we need to set up the Visual studio

environment.

Allplan libraries
The Allplan libraries which we need for development can be found in the PRG folder in the Program

Files. Libraries for Python always have .pyd file extension. Remember the path to the files.

Figure 10: locating the Allplan PYD libraries

LIBRARIES DESCRIPTION

ELEMENTS ?

GEOMETRY CONTAINS ALL GEOMETRY FUNCTIONS AND OBJECTS

IFW_INPUT ?

PALETTE ?

REINFORCEMENT CONTAINS ALL REINFORCEMENT FUNCTIONS AND OBJ

UTILITY GENERAL UTILITIES

Python Project in Visual Studio
You can either create a new Python project manually in Visual Studio, or use the template provided

by your Allplan reseller.

When using the template, open the .pyproj file in a text editor and change the paths of the

<reference include=”…”> and all other paths to the appropriate path in the library. Open the

template afterwards, Visual Studio will start with the necessary libraries already included.

When starting from scratch, create a new Visual Studio project and select Python Application from

the list. Afterwards you need to add the libraries yourself. Therefore click right on the references in

the right pane and select “add reference”. Now you can also browse for the libraries. With shift-click

you can select multiple libraries at the same time.

Figure 11: adding a new library to the project

Figure 12: selecting Python application from the Python tab

When going to project > properties, you can select the interpreter to be used. When no interpreter is

available, please refer to the installation chapter. An interpreter is the vital component that will

execute and compile your code and check for errors. You can also define a startup application. In

most cases you are only going to have one script in a project. So the name of that script should

already be in the list.

Figure 13: selecting an interpreter in the properties pane

Double clicking on the script in the right pane should open the script and show an absolutely empty

screen with a cursor

Figure 14: the empty script

In order to test if everything is working, type <print (“hello”)> (without <>). You should get an output

window showing you hello after clicking on the green little arrow in the top screen.

Figure 15: run application

Figure 16: application running and well - Visual Studio has been set up correctly

Analyzing an example script

Generating PythonDoc
To help you get going, it might be useful to generate documentation of all the definitions in the

Allplan libraries. This can be done through the test projects included in your installation.

When using the project template, these will already be in the list with python scripts. When you

created a project from scratch, you will have to drag the file from the Examples/PythonParts folder

into your project’s solution explorer. It will be added to the project and automatically use your

imported libraries.

Import the “createHTMLDocumentation.py” file in your project.

A little bit down in the script you will see the following:

𝐷𝑅𝐼𝑉𝐸_𝐿𝐸𝑇𝑇𝑅 = ′𝑋:\\′

Change X to the drive on which you installed Allplan and run the script. Documentation is now

written to ETC/PythonPartsScripts/Docu. The documentation consists of html files that are easy to

read.

Figure 17: successfully generated pythonDoc

Before we start
In this tutorial series, we do expect some basic knowledge of programming. If you are unfamiliar with

how Python works or coding in general, we refer to the following tutorial on YouTube in English. In

order to fully understand the next paragraphs, you should be familiar with concepts like: definitions,

classes, inheritance, objects, instances and general python syntax.

ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑦𝑜𝑢𝑡𝑢𝑏𝑒. 𝑐𝑜𝑚/𝑤𝑎𝑡𝑐ℎ? 𝑣 = 𝑁4𝑚𝐸𝑧𝐹𝐷𝑗𝑞𝑡𝐴

Basic PythonPart structure

Figure 18: the basic guideline scheme every PythonPart needs to follow

A PythonPart mainly consists of two files, the PYP and the PY file. As discussed above, the PYP file

contains parameters for menu creation and reference in XML format. The PYP file can also be used as

an indirect modifier of the PythonPart through a basic XML editor. More complex changes and

adaptations to Objects in Allplan (E.g. reacting to existing object in the Allplan object space) need to

be done with the use of real Python Scripting. This is where the PYP file comes in.

PythonPart

.PY file
script

logical code

inherited code

connection to
parameters in

.PYP

.PYP file
XML

parameters with
ID and Name

Within the PY script file, a connection is laid with the parameters defined in the PYP parameter file. If

this connection has not been executed properly, or some objects are not referenced to, nothing will

happen upon executing the script in Allplan.

Furthermore, the PY script file “inherits” a few definitions. Upon dragging the file into Allplan, the

program will start looking for these definitions and try to execute them. The output should ALWAYS

be the same. There are three types of main definitions in Allplan script language. They will be

discussed later on.

Defining inherited methods
Although, Python is unable to inherit certain properties from classes (in comparison to Java for

example), inheritance in Python can be seen as the knowledge that the following three Python

Definitions will always be accessed by the Allplan Interpreter. It is therefore important to define

them properly.

DEFINITION NAME USAGE ALLPLAN ASSOCIATED PARAMETER OUTPUT

CREATE_ELEMENT(…): ELEMENT GEOMETRY NONE GEOMETRY

MOVE_HANDLE(…): ELEMENT HANDLES NONE GEOMETRY,
HANDLES

EXPAND_CREATE_ELEMENT(…): EXPANDED GEOMETRY

REACTS TO OBJECTS
GEOMETRYEXPAND (0/1) BOOLEAN CHECK,

POINT, GEOMETRY
 Figure 19: different definitions that should be used in Python for Allplan

“Expand Create Element” makes use of the GeometryExpand parameter. If this parameter is set to

zero, the definition does not need to be executed and defined.

A basic Python script structure for a beam would be like below.

(IMPORT STATEMENTS OMITTED)

DEF CREATE_ELEMENT(BUILD_ELE, DOC):

 ELEMENT = BEAM(DOC) //REFERENCE TO THE BEAM CLASS

 (…)

 RETURN ELEMENT.CREATE(BUILD_ELE) //RETURNS GEOMETRY

DEF MOVE_HANDLE(BUILD_ELE, HANDLE, HANDLE_PROP, INPUT_PNT, DOC):

 (...)

 RETURN ELEMENT.CREATE(BUILD_ELE) //RETURNS GEOMETRY

DEF EXPAND_CREATE_ELEMENT(BUILD_ELE, EXPAND_UTIL, REF_PNT, VIEW_PROJ, DOC):

 ELEMENT = BEAM(DOC) //REFERENCE TO THE BEAM CLASS

 (…)

 RETURN (TRUE, MODEL_PNT, ELEMENT.CREATE(BUILD_ELE, BEAM_LENGTH, BEAM_HEIGHT))

CLASS BEAM() :

DEF __INIT__(SELF, DOC): //INITIALIZE THE BEAM > THE REFERENCED DOC IS ALWAYS PASSED THROUGH!

(…)

We can see that the following structure is maintained: Object data gets created in in the Object class

(below), this data gets handled to Allplan through the basic definitions. If only defining a simple

beam, create_element and move_handle are enough. When creating reinforcements that react to

the environment, expand_create element is necessary. (create_element is obsolete as one of the two

gets selected because of the expandGeometry parameter)

When handling reinforcement, this should also be passed through the create_element method

together with the other geometry. Allplan will handle the recognition of different elements.

Referring to parameters from the python script
Assigning parameters from within the Python script is fairly easy once you have created the correct

parameters in the PYP file. An example will clarify this.

When I define a parameter with <name>Beam_Width</name> and <value>200</value> I can refer to

this parameter in the Python script as follows:

CLASS BEAM() :

(…)

DEF CREATE_GEOMETRY(SELF, BUILD_ELE): //CREATED A DEFINITION FOR SIMPLIFICATION, NOT NECESSARY

 BEAM_WIDTH = BUILD_ELE.BEAMWIDTH.VALUE

 (…)

 COLUMN = ALLPLANGEO.POLYHEDRON3D.CREATECUBOID(BEAM_WIDTH, (…))

 (…)

As you can see, the assignment is fairly easy. In this case, Beam_width in the Python script will be

200, and this value can, afterwards, be used to create the column with another function (in this case

createCuboid).

All parameters, in order to use them properly, need to be referred to. The only parameters that are

handled by Allplan are ExpanderStart, ExpanderEnd and GeometryExpand.

Import statements and python philosophy
Every script, as described above, should start with the import statements and the definitions that

Allplan will use. In these import statements, it is of course possible to import your own scripts. In

case you want to use an external interface to change some object properties, or you want to write an

import application for Allplan, Python can be easily used to create a few python scripts that handle

these. A major advantage of using Python is data conversion. It is now possible to create your own

data converters. You handle the conversion, you control the data loss and conservation, and you are

in charge. This is contrasting to how import was handled before in Allplan.

Figure 20: advantages of Python in the Allplan import Workflow

non-recognised
Allplan import

format

convert to
recognized

Allplan format
through Python

import in
Allplan with

almost no data
loss

non-recognised
Allplan import format

convert to
recognized Allplan

format (e.g. IFC) with
third party software

import in Allplan
with substantial

amount of data loss

Simple column script example
We will discuss the creation of a simple column in Allplan. The column has a little reinforcement as

an example and is adjustable.

In the Allplan PythonPart example scripts, a column1.py script can be found. This will be used as a

first basic example. Besides the basic imports from the Allpan NemAll libraries, this simple class also

uses predefined scripts for easier object handling. We will keep the description and explanation

limited to the functions used in the column script.

TODO

